20.18 Summary of the Model

summary(model)
## Call:
## rpart(formula=form, data=ds[tr, vars], model=TRUE)
##   n= 123722 
## 
##           CP nsplit rel error    xerror        xstd
## 1 0.14525806      0 1.0000000 1.0000000 0.005511437
## 2 0.03497808      1 0.8547419 0.8543189 0.005191983
## 3 0.01000000      3 0.7847858 0.7890547 0.005031264
## 
## Variable importance
##    humidity_3pm        sunshine        temp_3pm wind_gust_speed        max_temp 
##              78               4               4               3               3 
##       cloud_3pm    humidity_9am  wind_speed_3pm  wind_speed_9am        rainfall 
##               2               1               1               1               1 
## 
## Node number 1: 123722 observations,    complexity param=0.1452581
##   predicted class=No   expected loss=0.2101647  P(node) =1
##     class counts: 97720 26002
##    probabilities: 0.790 0.210 
##   left son=2 (104365 obs) right son=3 (19357 obs)
##   Primary splits:
##       humidity_3pm < 71.5    to the left,  improve=6887.670, (0 missing)
##       rainfall     < 0.55    to the left,  improve=4079.306, (0 missing)
##       rain_today   splits as  LR,          improve=4023.390, (0 missing)
##       cloud_3pm    < 6.5     to the left,  improve=2778.256, (0 missing)
##       sunshine     < 6.05    to the right, improve=2630.088, (0 missing)
##   Surrogate splits:
##       sunshine  < 0.45    to the right, agree=0.852, adj=0.053, (0 split)
##       temp_3pm  < 10.55   to the right, agree=0.851, adj=0.050, (0 split)
##       max_temp  < 10.55   to the right, agree=0.848, adj=0.029, (0 split)
##       cloud_3pm < 7.5     to the left,  agree=0.846, adj=0.018, (0 split)
##       rainfall  < 30.3    to the left,  agree=0.846, adj=0.016, (0 split)
## 
## Node number 2: 104365 observations
##   predicted class=No   expected loss=0.1383127  P(node) =0.8435444
##     class counts: 89930 14435
##    probabilities: 0.862 0.138 
## 
## Node number 3: 19357 observations,    complexity param=0.03497808
##   predicted class=Yes  expected loss=0.4024384  P(node) =0.1564556
....

In the following pages we dissect the various components of this summary.



Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0