20.83 Conditional Regression Tree
We can also build a regression tree using (Hothorn et al. 2022).
<- ctree(formula=form, data=ds[tr, vars]) model
model
##
## Model formula:
## risk_mm ~ rain_today + temp_3pm + temp_9am + cloud_3pm + cloud_9am +
## pressure_3pm + pressure_9am + humidity_3pm + humidity_9am +
## wind_speed_3pm + wind_speed_9am + wind_dir_3pm + wind_dir_9am +
## wind_gust_speed + wind_gust_dir + sunshine + evaporation +
## rainfall + max_temp + min_temp
##
## Fitted party:
## [1] root
## | [2] rainfall <= 21
## | | [3] humidity_3pm <= 82
## | | | [4] humidity_3pm <= 66
## | | | | [5] pressure_3pm <= 1007.4
## | | | | | [6] humidity_3pm <= 50
## | | | | | | [7] sunshine <= 7.9
## | | | | | | | [8] wind_dir_3pm <= NNE
## | | | | | | | | [9] cloud_3pm <= 5: 3.628 (n=83, err=NA)
## | | | | | | | | [10] cloud_3pm > 5: 7.739 (n=148, err=NA)
## | | | | | | | [11] wind_dir_3pm > NNE
## | | | | | | | | [12] humidity_3pm <= 25: 1.597 (n=195, err=NA)
## | | | | | | | | [13] humidity_3pm > 25: 2.953 (n=751, err=NA)
## | | | | | | [14] sunshine > 7.9
## | | | | | | | [15] humidity_3pm <= 25
## | | | | | | | | [16] wind_gust_speed <= 56
## | | | | | | | | | [17] humidity_3pm <= 13: 0.030 (n=733, err=NA)
## | | | | | | | | | [18] humidity_3pm > 13: 0.400 (n=1146, err=NA)
## | | | | | | | | [19] wind_gust_speed > 56
## | | | | | | | | | [20] humidity_3pm <= 17
## | | | | | | | | | | [21] wind_gust_speed <= 70: 0.450 (n=400, err=NA)
## | | | | | | | | | | [22] wind_gust_speed > 70
## | | | | | | | | | | | [23] evaporation <= 16.4: 0.858 (n=180, err=NA)
## | | | | | | | | | | | [24] evaporation > 16.4: 7.710 (n=10, err=1005.6)
## | | | | | | | | | [25] humidity_3pm > 17
## | | | | | | | | | | [26] wind_dir_9am <= S: 2.610 (n=221, err=NA)
## | | | | | | | | | | [27] wind_dir_9am > S
## | | | | | | | | | | | [28] temp_3pm <= 28.1: 0.118 (n=94, err=NA)
## | | | | | | | | | | | [29] temp_3pm > 28.1: 1.386 (n=71, err=NA)
## | | | | | | | [30] humidity_3pm > 25
## | | | | | | | | [31] wind_dir_3pm <= ENE
## | | | | | | | | | [32] wind_gust_speed <= 70: 2.987 (n=575, err=NA)
## | | | | | | | | | [33] wind_gust_speed > 70: 9.092 (n=61, err=14196.2)
## | | | | | | | | [34] wind_dir_3pm > ENE
## | | | | | | | | | [35] cloud_3pm <= 6
## | | | | | | | | | | [36] wind_gust_speed <= 48
....
References
Hothorn, Torsten, Kurt Hornik, Carolin Strobl, and Achim Zeileis. 2022. Party: A Laboratory for Recursive Partytioning. http://party.R-forge.R-project.org.
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0
