20.83 Conditional Regression Tree

We can also build a regression tree using (Hothorn et al. 2022).

model <- ctree(formula=form, data=ds[tr, vars])
model
## 
## Model formula:
## risk_mm ~ rain_today + temp_3pm + temp_9am + cloud_3pm + cloud_9am + 
##     pressure_3pm + pressure_9am + humidity_3pm + humidity_9am + 
##     wind_speed_3pm + wind_speed_9am + wind_dir_3pm + wind_dir_9am + 
##     wind_gust_speed + wind_gust_dir + sunshine + evaporation + 
##     rainfall + max_temp + min_temp
## 
## Fitted party:
## [1] root
## |   [2] rainfall <= 21
## |   |   [3] humidity_3pm <= 82
## |   |   |   [4] humidity_3pm <= 66
## |   |   |   |   [5] pressure_3pm <= 1007.4
## |   |   |   |   |   [6] humidity_3pm <= 50
## |   |   |   |   |   |   [7] sunshine <= 7.9
## |   |   |   |   |   |   |   [8] wind_dir_3pm <= NNE
## |   |   |   |   |   |   |   |   [9] cloud_3pm <= 5: 3.628 (n=83, err=NA)
## |   |   |   |   |   |   |   |   [10] cloud_3pm > 5: 7.739 (n=148, err=NA)
## |   |   |   |   |   |   |   [11] wind_dir_3pm > NNE
## |   |   |   |   |   |   |   |   [12] humidity_3pm <= 25: 1.597 (n=195, err=NA)
## |   |   |   |   |   |   |   |   [13] humidity_3pm > 25: 2.953 (n=751, err=NA)
## |   |   |   |   |   |   [14] sunshine > 7.9
## |   |   |   |   |   |   |   [15] humidity_3pm <= 25
## |   |   |   |   |   |   |   |   [16] wind_gust_speed <= 56
## |   |   |   |   |   |   |   |   |   [17] humidity_3pm <= 13: 0.030 (n=733, err=NA)
## |   |   |   |   |   |   |   |   |   [18] humidity_3pm > 13: 0.400 (n=1146, err=NA)
## |   |   |   |   |   |   |   |   [19] wind_gust_speed > 56
## |   |   |   |   |   |   |   |   |   [20] humidity_3pm <= 17
## |   |   |   |   |   |   |   |   |   |   [21] wind_gust_speed <= 70: 0.450 (n=400, err=NA)
## |   |   |   |   |   |   |   |   |   |   [22] wind_gust_speed > 70
## |   |   |   |   |   |   |   |   |   |   |   [23] evaporation <= 16.4: 0.858 (n=180, err=NA)
## |   |   |   |   |   |   |   |   |   |   |   [24] evaporation > 16.4: 7.710 (n=10, err=1005.6)
## |   |   |   |   |   |   |   |   |   [25] humidity_3pm > 17
## |   |   |   |   |   |   |   |   |   |   [26] wind_dir_9am <= S: 2.610 (n=221, err=NA)
## |   |   |   |   |   |   |   |   |   |   [27] wind_dir_9am > S
## |   |   |   |   |   |   |   |   |   |   |   [28] temp_3pm <= 28.1: 0.118 (n=94, err=NA)
## |   |   |   |   |   |   |   |   |   |   |   [29] temp_3pm > 28.1: 1.386 (n=71, err=NA)
## |   |   |   |   |   |   |   [30] humidity_3pm > 25
## |   |   |   |   |   |   |   |   [31] wind_dir_3pm <= ENE
## |   |   |   |   |   |   |   |   |   [32] wind_gust_speed <= 70: 2.987 (n=575, err=NA)
## |   |   |   |   |   |   |   |   |   [33] wind_gust_speed > 70: 9.092 (n=61, err=14196.2)
## |   |   |   |   |   |   |   |   [34] wind_dir_3pm > ENE
## |   |   |   |   |   |   |   |   |   [35] cloud_3pm <= 6
## |   |   |   |   |   |   |   |   |   |   [36] wind_gust_speed <= 48
....

References

Hothorn, Torsten, Kurt Hornik, Carolin Strobl, and Achim Zeileis. 2022. Party: A Laboratory for Recursive Partytioning. http://party.R-forge.R-project.org.


Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0