20.83 Conditional Regression Tree
We can also build a regression tree using (Hothorn et al. 2024).
##
## Model formula:
## risk_mm ~ rain_today + temp_3pm + temp_9am + cloud_3pm + cloud_9am +
## pressure_3pm + pressure_9am + humidity_3pm + humidity_9am +
## wind_speed_3pm + wind_speed_9am + wind_dir_3pm + wind_dir_9am +
## wind_gust_speed + wind_gust_dir + sunshine + evaporation +
## rainfall + max_temp + min_temp
##
## Fitted party:
## [1] root
## | [2] rainfall <= 14.4
## | | [3] humidity_3pm <= 81
## | | | [4] humidity_3pm <= 66
## | | | | [5] pressure_3pm <= 1008.9
## | | | | | [6] humidity_3pm <= 51
## | | | | | | [7] sunshine <= 7.7
## | | | | | | | [8] wind_dir_3pm <= NNE
## | | | | | | | | [9] cloud_3pm <= 6: 3.319 (n=132, err=NA)
## | | | | | | | | [10] cloud_3pm > 6: 7.285 (n=142, err=NA)
## | | | | | | | [11] wind_dir_3pm > NNE
## | | | | | | | | [12] wind_gust_speed <= 91
## | | | | | | | | | [13] pressure_3pm <= 1006.1: 3.006 (n=727, err=NA)
## | | | | | | | | | [14] pressure_3pm > 1006.1
## | | | | | | | | | | [15] rainfall <= 7.6
## | | | | | | | | | | | [16] pressure_9am <= 1011.9: 1.292 (n=424, err=NA)
## | | | | | | | | | | | [17] pressure_9am > 1011.9: 3.464 (n=109, err=NA)
## | | | | | | | | | | [18] rainfall > 7.6: 9.585 (n=13, err=4814.3)
## | | | | | | | | [19] wind_gust_speed > 91: 8.692 (n=39, err=13729.6)
## | | | | | | [20] sunshine > 7.7
## | | | | | | | [21] humidity_3pm <= 24
## | | | | | | | | [22] wind_gust_speed <= 56
## | | | | | | | | | [23] humidity_3pm <= 13
## | | | | | | | | | | [24] wind_dir_3pm <= WSW
## | | | | | | | | | | | [25] min_temp <= 28: 0.008 (n=764, err=NA)
## | | | | | | | | | | | [26] min_temp > 28: 0.179 (n=19, err=7.6)
## | | | | | | | | | | [27] wind_dir_3pm > WSW: 0.139 (n=403, err=NA)
## | | | | | | | | | [28] humidity_3pm > 13
## | | | | | | | | | | [29] wind_gust_speed <= 44: 0.238 (n=1089, err=NA)
## | | | | | | | | | | [30] wind_gust_speed > 44: 0.544 (n=786, err=NA)
## | | | | | | | | [31] wind_gust_speed > 56
## | | | | | | | | | [32] humidity_3pm <= 17
## | | | | | | | | | | [33] wind_gust_speed <= 69: 0.461 (n=494, err=NA)
## | | | | | | | | | | [34] wind_gust_speed > 69
## | | | | | | | | | | | [35] evaporation <= 16: 0.847 (n=257, err=NA)
## | | | | | | | | | | | [36] evaporation > 16: 6.240 (n=10, err=1002.0)
....
References
Hothorn, Torsten, Kurt Hornik, Carolin Strobl, and Achim Zeileis. 2024. Party: A Laboratory for Recursive Partytioning. http://party.R-forge.R-project.org.
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0