15.1 Machine Learning Setup
20200514 Packages used in this chapter include magrittr (Bache and Wickham 2022), and rattle (G. Williams 2024).
Packages are loaded into the currently running R session from your
local library directories on disk. Missing packages can be installed
using utils::install.packages() within R. On Ubuntu, for
example, R packages can also be installed using $ wajig install r-cran-<pkgname>
.
# Load required packages from local library into the R session.
library(magrittr) # Data pipelines: %>% %<>% %T>% equals().
library(rattle) # Dataset: weather.
The rattle::weatherAUS dataset is loaded into the template
variable ds
and further template variables are setup as
introduced by Graham J. Williams (2017). See
Chapter 8 for details.
dsname <- "weatherAUS"
ds <- get(dsname)
nobs <- nrow(ds)
vnames <- names(ds)
ds %<>% clean_names(numerals="right")
names(vnames) <- names(ds)
vars <- names(ds)
target <- "rain_tomorrow"
vars <- c(target, vars) %>% unique() %>% rev()
The variable form
is used in this chapter as the formula
describing the model to be built.
## rain_tomorrow ~ .
## # A tibble: 226,868 × 24
## date location min_temp max_temp rainfall evaporation sunshine
## <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018-03-16 Portland 7.8 23.6 0.8 NA NA
## 2 2021-09-13 Canberra -1 11.6 0.6 NA NA
## 3 2013-01-15 NorahHead 17.4 26.3 1 NA NA
## 4 2010-12-31 Portland 13.5 34.4 0 6.6 13
## 5 2020-04-06 Ballarat 6.9 12.5 5.4 NA NA
## 6 2014-09-22 Portland 3.7 22.4 0.2 2.6 10.3
## 7 2023-02-01 PearceRAAF 18.5 34 0 NA 12.7
## 8 2011-10-23 SalmonGums 13.8 15.4 2.4 NA NA
## 9 2009-01-24 Moree 23.2 35.5 0 5.2 10.9
## 10 2018-07-18 Canberra 0.2 12.8 0 NA NA
## # ℹ 226,858 more rows
## # ℹ 17 more variables: wind_gust_dir <ord>, wind_gust_speed <dbl>,
## # wind_dir_9am <ord>, wind_dir_3pm <ord>, wind_speed_9am <dbl>,
## # wind_speed_3pm <dbl>, humidity_9am <int>, humidity_3pm <int>,
## # pressure_9am <dbl>, pressure_3pm <dbl>, cloud_9am <int>, cloud_3pm <int>,
## # temp_9am <dbl>, temp_3pm <dbl>, rain_today <fct>, risk_mm <dbl>,
## # rain_tomorrow <fct>
References
Bache, Stefan Milton, and Hadley Wickham. 2022. Magrittr: A Forward-Pipe Operator for r. https://magrittr.tidyverse.org.
Williams, Graham. 2024. Rattle: Graphical User Interface for Data Science in r. https://rattle.togaware.com/.
Williams, Graham J. 2017. The Essentials of Data Science: Knowledge Discovery Using r. The r Series. CRC Press.
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0