8.13 Review the Dataset

The dataset is now ready to be analysed but before doing so it is useful to have another tibble::glimpse().

glimpse(ds)
## Rows: 5,044
## Columns: 24
## $ date            <dttm> 2008-02-01, 2008-02-02, 2008-02-03, 2008-02-04, 2008-…
## $ location        <chr> "Sydney", "Sydney", "Sydney", "Sydney", "Sydney", "Syd…
## $ min_temp        <dbl> 19.5, 19.5, 21.6, 20.2, 19.7, 20.2, 18.6, 17.2, 16.4, …
## $ max_temp        <dbl> 22.4, 25.6, 24.5, 22.8, 25.7, 27.2, 26.3, 22.3, 20.8, …
## $ rainfall        <dbl> 15.6, 6.0, 6.6, 18.8, 77.4, 1.6, 6.2, 27.6, 12.6, 8.8,…
## $ evaporation     <dbl> 6.2, 3.4, 2.4, 2.2, NA, 2.6, 5.2, 5.8, 4.8, 4.4, 6.4, …
## $ sunshine        <dbl> 0.0, 2.7, 0.1, 0.0, 0.0, 8.6, 5.2, 2.1, 3.0, 10.1, 8.0…
## $ wind_gust_dir   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ wind_gust_speed <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ wind_dir_9am    <chr> "S", "W", "ESE", "NNE", "NNE", "W", "W", "S", "SSW", "…
## $ wind_dir_3pm    <chr> "SSW", "E", "ESE", "E", "W", "ENE", "S", "SE", "W", "S…
## $ wind_speed_9am  <dbl> 17, 9, 17, 22, 11, 9, 15, 7, 19, 11, 9, 7, 24, 15, 19,…
## $ wind_speed_3pm  <dbl> 20, 13, 2, 20, 6, 22, 15, 15, 9, 20, 26, 24, 30, 19, 2…
## $ humidity_9am    <dbl> 92, 83, 88, 83, 88, 69, 75, 77, 92, 80, 78, 68, 87, 81…
## $ humidity_3pm    <dbl> 84, 73, 86, 90, 74, 62, 80, 61, 91, 53, 53, 67, 70, 51…
## $ pressure_9am    <dbl> 1017.6, 1017.9, 1016.7, 1014.2, 1008.3, 1002.7, 999.0,…
## $ pressure_3pm    <dbl> 1017.4, 1016.4, 1015.6, 1011.8, 1004.8, 998.6, 1000.3,…
## $ cloud_9am       <dbl> 8, 7, 7, 8, 8, 6, 4, 7, 7, 4, 7, 7, 8, 7, 7, 7, 7, 7, …
## $ cloud_3pm       <dbl> 8, 7, 8, 8, 8, 6, 7, 8, 7, 2, 8, 7, 7, 1, 3, 6, 7, 6, …
## $ temp_9am        <dbl> 20.7, 22.4, 23.5, 21.4, 22.5, 23.8, 21.7, 18.9, 17.1, …
## $ temp_3pm        <dbl> 20.9, 24.8, 23.0, 20.9, 25.5, 26.0, 22.3, 21.1, 16.5, …
## $ rain_today      <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"…
## $ risk_mm         <dbl> 6.0, 6.6, 18.8, 77.4, 1.6, 6.2, 27.6, 12.6, 8.8, 0.0, …
## $ rain_tomorrow   <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"…


Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0