8.1 Dataset Setup
20200320 Packages used in this chapter include dplyr (Wickham et al. 2023), janitor (Firke 2023), magrittr (Bache and Wickham 2022), randomForest (Breiman et al. 2024), and rattle (G. Williams 2024).
Packages are loaded into the currently running R session from your
local library directories on disk. Missing packages can be installed
using utils::install.packages() within R. On Ubuntu, for
example, R packages can also be installed using $ wajig install r-cran-<pkgname>
.
# Load required packages from local library into the R session.
library(dplyr) # Wrangling: select() sample_frac().
library(janitor) # Cleanup: clean_names().
library(magrittr) # Data pipelines: %>% %<>% %T>% equals().
library(randomForest) # Model: randomForest() na.roughfix() for missing data.
library(rattle) # Dataset: weather.
After loading the required packages into the library we access the
rattle::weatherAUS dataset and save it into the template
dataset named ds
, as per the template based approach
introduced in Graham J. Williams (2017). The dataset is
reasonably large ( rows or observations by
columns or variables) and is used extensively
in this book to illustrate the capabilities of R for the Data
Scientist.
# Initialise the dataset as per the template.
dsname <- "weatherAUS"
ds <- get(dsname)
ds %>% sample_frac()
## # A tibble: 5,044 × 24
## Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine
## <dttm> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2020-10-24 00:00:00 Sydney 18.8 26 3.2 9.6 0.6
## 2 2017-09-29 00:00:00 Sydney 13 26.9 0 6.8 11.1
## 3 2018-07-07 00:00:00 Sydney 9.2 17.5 0 7 8.5
## 4 2011-07-20 00:00:00 Sydney 8.7 18.5 76.8 NA 1.6
## 5 2010-10-12 00:00:00 Sydney 16.4 21.8 1 6 5.9
## 6 2009-07-26 00:00:00 Sydney 8.9 15.3 0 5.8 0.3
## 7 2022-07-11 00:00:00 Sydney 9.8 14.9 11.4 5.8 4.2
## 8 2011-06-03 00:00:00 Sydney 10.6 20.4 0 1.2 8.8
## 9 2014-01-12 00:00:00 Sydney 21.1 28.8 0 10.4 10.3
## 10 2022-06-17 00:00:00 Sydney 9.6 19.1 0 4 8.6
## # ℹ 5,034 more rows
## # ℹ 17 more variables: WindGustDir <chr>, WindGustSpeed <dbl>,
## # WindDir9am <chr>, WindDir3pm <chr>, WindSpeed9am <dbl>, WindSpeed3pm <dbl>,
## # Humidity9am <dbl>, Humidity3pm <dbl>, Pressure9am <dbl>, Pressure3pm <dbl>,
## # Cloud9am <dbl>, Cloud3pm <dbl>, Temp9am <dbl>, Temp3pm <dbl>,
## # RainToday <chr>, RISK_MM <dbl>, RainTomorrow <chr>
References
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0